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Abstract Chemical shift prediction has an unappreciated

power to guide backbone resonance assignment in cases

where protein structure is known. Here we describe Res-

onance Assignment by chemical Shift Prediction (RASP), a

method that exploits this power to derive protein backbone

resonance assignments from chemical shift predictions.

Robust assignments can be obtained from a minimal set of

only the most sensitive triple-resonance experiments, even

for spectroscopically challenging proteins. Over a test set

of 154 proteins RASP assigns 88 % of residues with an

accuracy of 99.7 %, using only information available from

HNCO and HNCA spectra. Applied to experimental data

from a challenging 34 kDa protein, RASP assigns 90 % of

manually assigned residues using only 40 % of the

experimental data required for the manual assignment.

RASP has the potential to significantly accelerate the

backbone assignment process for a wide range of proteins

for which structural information is available, including

those for which conventional assignment strategies are not

feasible.

Keywords Chemical shift prediction � Structure-based

resonance assignment � Large protein NMR

Introduction

NMR spectroscopy is frequently the method of choice for

the study of protein structure, interactions and dynamics

(Mittermaier and Kay 2009), and is a valuable tool for

mapping ligand binding in drug development programs

(Lepre et al. 2004). The assignment of spectral frequencies

(chemical shifts) to specific atoms of the protein is a pre-

requisite for these analyses. Traditionally, such assign-

ments have required manual analysis of extensive

experimental datasets, imposing substantial costs in both

labor and instrument time, and have represented a signifi-

cant bottle-neck in protein NMR studies. Accordingly,

much effort has been directed towards the automation of

the assignment process. Progress to this end has meant that

routine, fully automated spectral assignment of small pro-

teins is now achievable (Schmidt and Güntert 2012).

However, current approaches do not scale well to larger or

more challenging proteins, where the available data are

frequently ambiguous and incomplete.

Increasingly, the goal of protein NMR is not to deter-

mine structures, but rather to gain functional insights into

systems for which structural information is already avail-

able (Barrett et al. 2013). Of the 47 assignment notes

describing new protein assignments in a recent issue of

Biomolecular NMR Assignments (Volume 7, issue 2), a

crystal structure was available in the PDB (Berman et al.

2000) for at least 21 targets. Accordingly, several methods

have been proposed that aim to exploit available structural

information to assist in the resonance assignment problem

(Langmead and Donald 2004; Stratmann et al. 2010).

Typically, these strategies aim to find the assignment that

best matches observed networks of NOEs with those

expected from a protein structure, with additional restraints

derived from other structural observables such as residual
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dipolar couplings (RDCs) or paramagnetic effects. To date,

none of these approaches has offered a compelling alter-

native to conventional triple-resonance assignment strate-

gies, for at least two reasons: they have been limited to

smaller proteins for which conventional approaches are

straightforward, and they rely on the measurement of

structural parameters that are not necessarily of primary

interest in cases where protein structure is already well

characterized.

Concurrently, significant effort has focused on improv-

ing the accuracy of chemical shift prediction from protein

structure (Han et al. 2011; Kohlhoff et al. 2009; Shen and

Bax 2010). Progress in this area has enabled the use of

assigned chemical shift information to drive structure

determination (Cavalli et al. 2007; Shen et al. 2008; Wis-

hart et al. 2008). Despite some early efforts (Gronwald

et al. 1998), little attention has been directed at the inverse

problem: the use of structure-based chemical shift predic-

tions to guide resonance assignment. Here, we show that

chemical shift prediction has an unappreciated power to

guide backbone resonance assignment in cases where

protein structure is known. We exploit this power to

develop Resonance Assignment by chemical Shift Predic-

tion (RASP), a structure-based assignment strategy that

utilizes conventional triple resonance experiments to aid

the assignments of challenging protein targets.

Methods

Test set

A test set comprising matched pairs of high-resolution

crystal structures and assigned NMR chemical shifts was

extracted from the database distributed with TALOS (Shen

et al. 2009). In its construction, the TALOS database was

filtered to remove assignments to residues with unusually

high crystallographic B-factor and those with extreme

outlier chemical shifts. This results in numerous stretches

missing chemical shift data, mimicking the incompleteness

common in experimental datasets of challenging proteins.

We excluded from this dataset those proteins for which

assignments are missing for more than 40 % of crystallo-

graphically resolved residues, those for which experimental

amide shifts were absent, and those for which the experi-

mental conditions for the NMR experiments obviously

deviated from those in the crystal structure in a significant

way. For example, we removed TALOS ID 4568, which

paired the assigned chemical shifts of acid-denatured

apomyoglobin (BMRB ID 4568) with an X-ray crystal

structure of a mutant (but folded) form of the holoprotein

(PDB ID 1DTI). The result is a set of 154 proteins com-

prising on average 139 spin systems predicted from the

crystal structure (a range of 52–615) and 114 experimental

spin systems (32–495) (Table S1).

Chemical shift predictions for the test set were made

with Sparta? (version 2.50F1 Rev 2011.108.15.55) (Shen

and Bax 2010), ShiftX2 (version 1.07) (Han et al. 2011)

and CamShift (version 1.35) (Kohlhoff et al. 2009). Pre-

dictions used the default settings for each predictor, except

for ShiftX2, where we excluded results from ShiftY, as

most members of the test set are present in the BMRB

database and could thus favourably bias ShiftY predictions.

No attempt was made to correct for temperature, pH or

deuteration in the shift predictions of the test set. By way of

comparison, a set of structure-independent shift predictions

was derived by taking residue-specific average chemical

shifts from the RefDB database (Zhang et al. 2003). Pre-

liminary tests showed the performance of CamShift to be

slightly inferior to that of the other predictors in this

application, so it was not used further. Sparta? and

ShiftX2 performed almost identically, on average, over the

test set, and we report only the results for Sparta? pre-

dictions here. In real applications, however, we advocate

the use and close comparison of several chemical shift

predictors, as performance varies to some extent on a

protein-by-protein basis.

Comparing predicted and experimental chemical shifts

We use a weighted distance measure to compare the set of

chemical shifts comprising an experimental spin system i

with the corresponding set of predicted shifts for residue r

in the target protein structure:

Di;r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

X

Xexpt � Xpred

wX

� �2
s

ð1Þ

where the sum is over all shifts X common to spin system

i and residue r, including i - 1 (r - 1) shifts. The

weighting terms wX are chosen to account for the varying

precision with which each shift type can be predicted.

Specifically, for shifts predicted by Sparta? we use the

estimated prediction error for each predicted shift. For

ShiftX2 and CamShift, we use the prediction RMSDs for

each shift type, as reported for the 61 protein test set of Han

et al. (2011).

In an attempt to account for the fact that NMR spectra

are not uniformly populated, and that spin systems in

densely populated spectral regions will tend to be closer to

a larger number of predicted shifts, purely by chance, we

normalize D such that the average shift distance for each

spin system is 1, to yield N:

Ni;r ¼
nDi;r
Pn

s Di;s
ð2Þ
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where n is the number of residues. As shown in Fig. 1b,

small values of N are strongly predictive of assignment

accuracy, and a simple empirical function,

Li;r ¼ 0:9 1�
N3:5

i;r

N3:5
i;r þ 0:001

 !

ð3Þ

approximates the relationship between the normalised shift

distance and the likelihood of a correct assignment. This

serves as the first term of the RASP scoring function, Eq. 1.

For the second term, Si,j, we score the agreement

between the common shifts Xj and Xi-1 that support the

sequential relationship between spin systems i and j.

Because this entails the comparison of sets of experimental

chemical shifts (rather than comparison of predicated shifts

with experimental shifts, as in L) we adopt a more direct

and stringent scoring function:

Si;j ¼
Y

X

cdf Xi�1 � Xj

�

�

�

�

� �

ð4Þ

where cdf() is the normal cumulative distribution function

with variance of 0.1 ppm for CA and CO chemical shifts,

0.2 ppm for CB, 0.06 for N and 0.03 for any proton shift.

Our choice of these variances was based on the achievable

precision for each shift type in conventional triple-reso-

nance spectra of large proteins, taking into account spectral

resolution, line shape and potential for overlap. The

resulting scoring function does not penalise the absence of

any particular shift in either spin system.

The RASP scoring function

The RASP algorithm casts chemical shift assignment as a

combinatorial optimisation problem: it seeks assignments

that maximise the sum of two terms, the first of which

scores the agreement between the predicted and experi-

mental chemical shifts and the second of which scores

agreement between equivalent pairs of shifts from

sequentially assigned spin systems:
X

r

LpðrÞ;r þ SpðrÞ;pðr�1Þ
� 	

ð5Þ

Here a permutation of residues r is denoted p, where p
expresses the assignment such that p(r) = i denotes the

assignment of spin system i to residue r.

The RASP optimisation heuristic

The RASP optimisation strategy is based on the greedy

randomised adaptive search procedures (GRASP) meta-

heuristic (Resende and Ribeiro 2010). GRASP offers

effective optimisation of a wide range of combinatorial

optimisation problems with a minimum of adjustable

parameters, and showed superior performance when

applied to our test set, compared to a range of other opti-

misation strategies, including simulated annealing and

branch-and-bound search strategies (data not shown). Our

implementation is described in detail in the Supplementary

Methods. Briefly, approximate solutions are constructed by

weighted random selection from the best-scoring of an

exhaustive list of possible assignments to sequential

Fig. 1 a Backbone assignments can be inferred simply by identifying

the assignment that minimizes the distance between experimental and

predicted chemical shifts for spin systems derived from HNCO and

HNCACB (left) and from HNCO and HNCA (right). For each of 154

proteins, the percentage of residues assigned correctly is plotted

against the number of residues assigned, using chemical shifts

predicted with Sparta? (blue), or with structure-independent average

chemical shifts from RefDB (red). b The normalised shift distance

between spin system i and residue r, predicts the likelihood of correct

assignment of i to r. The frequency of correct assignment i to r is

plotted against the normalised shift distance Ni,r for chemical shift

predictors Sparta? (blue) and Shiftx2 (green) or structure-indepen-

dent average chemical shifts from RefDB (red), using spin systems

comprising HNCA/HNCO shifts (dashed lines) and HNCACB/HNCO

shifts (solid lines). Equation 3 is plotted as a heavy black line
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stretches of three residues (‘triplets’). The resulting

assignment is improved by a systematic search for a local

maximum in the scoring function by pairwise swaps of

residue assignments, accepting each swap that improves

the assignment score.

Ketopantoate reductase

Chemical shift predictions for ketopantoate reductase

(KPR) were made from the 1.7 Å crystal structure of apo

KPR (PDB id. 1KS9) (Matak-Vinkovic et al. 2001) using

Sparta? (Shen and Bax 2010) and ShiftX2 (Han et al.

2011) as for the test set, except that, for KPR, shift pre-

dictions were run with appropriate corrections for the

deuteration, pH and temperature conditions used for

acquisition of the NMR data (Headey et al. 2008). In

preliminary tests, RASP calculations against the ShiftX2

shift predictions yielded superior assignment coverage, so

these predictions were used for all of the results presented

here.

MARS (Jung and Zweckstetter 2004) was run against

the initial and final sets of KPR spin systems using a

fragment size of 5 and chemical shift cutoffs of 0.2 ppm

for CA and 0.5 ppm for CB. Secondary structure was input

as defined in PDB record 1KS9. PINE (Bahrami et al.

2009) was run against these input spin systems using the

PINE web-server (http://pine.nmrfam.wisc.edu/).

Results and discussion

Predicted chemical shifts are powerful aids to backbone

assignment

The accuracy of chemical shift prediction is currently

insufficient to be of use for the direct assignment of indi-

vidual shifts. However neither the backbone chemical

shifts of individual residues, nor their associated prediction

errors, are strongly correlated (Fig. S1). This lead us to

reason that grouping shift predictions by residue may offer

a means to increase the discriminatory power of these

predictions, and make them useful for guiding the assign-

ment problem. To test this hypothesis, we assemble

experimental shifts into generalized spin systems following

the approach of conventional triple-resonance assignment

strategies used almost universally for backbone assign-

ment. For example, the HNCO experiment correlates the

amide 1H and 15N chemical shifts of residue i with the
13CO shift of residue i - 1, while the HNCA experiment

correlates the amide shifts of residue i with the 13CA shifts

of residues i and i - 1. Thus, the spin systems assembled

from the HNCO and HNCA experiments comprise the

shifts [1Hi,
15Ni,

13COi-1, 13CAi,
13CAi-1] (Fig. 1a).

We initially use a simple weighted distance measure,

D (Eq. 1), to compare the set of chemical shifts comprising

the experimental spin system i with the corresponding set

of predicted shifts for residue r in the target protein

structure. A simplistic assignment strategy, then, is to find

the assignment of spin systems to residues that minimizes

the total shift distance by application of the Hungarian

algorithm (Kuhn 1955) to the matrix of distances D. We

tested this strategy against a data set drawn from the TA-

LOS database of assigned chemical shifts matched with

high-quality X-ray crystal structures (Shen et al. 2009).

The results of this naı̈ve approach are summarized in

Fig. 1a. Remarkably, it yields essentially complete and

correct assignments for a number of smaller proteins in our

test set, and correct assignments for more than 75 % of

assignable residues in even the largest protein when CB

shifts (from an HNCACB, for example) are considered.

Although this remains well short of the accuracy required

for a practically useful assignment strategy, it suggests that

the potential of chemical shift predictions to guide the

assignment process has perhaps been underestimated. It is

of particular note that, whereas CB chemical shifts are

strictly required for triple-resonance assignment by con-

ventional means, Fig. 1a shows that, even when shifts from

only the HNCO and HNCA experiments are considered,

shift predictions retain significant power to guide assign-

ment, with an average of 67 % of possible assignments

made correctly by this approach.

To highlight the specific role that structure-based

information plays in these results, we assemble a set of

structure-independent chemical shift predictions, in the

form of residue-type specific average chemical shifts from

the RefDB database (Zhang et al. 2003). Equivalent sta-

tistical chemical shift data are used in some form by

essentially all conventional manual or automatic assign-

ment strategies. When the simple assignment approach

described above is applied using these shift predictions, we

achieve an average accuracy of 12 % in the absence of CB

shifts, or 43 % when they are included (Fig. 1a). This

result confirms that significant additional information is

available in structure-based chemical shift predictions.

Thus, we seek to exploit this information to improve the

accuracy and efficiency of chemical shift assignment.

To further explore the potential of predicted chemical

shifts in backbone assignment, we asked to what extent

good agreement between experimental and predicted shifts

for any given residue could predict the likelihood that the

corresponding assignment was correct. We first normalise

the shift distances D as described in Methods, above, to

account for the fact that chemical shifts are not uniformly

distributed, and that spin systems in densely populated

regions of NMR spectra will tend to be closer to a larger

number of predicted shifts purely by chance. Figure 1b
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shows that small values of the normalised shift distance

N are strongly predictive of an accurate assignment.

Moreover, the relationship between N and assignment

accuracy is relatively insensitive to the composition of the

experimental spin systems, or to the chemical shift pre-

diction algorithm employed. For this reason, we choose to

use this relationship as a scoring function for the assign-

ment algorithm developed below. Once again, conven-

tional structure-independent chemical shift statistics have

only moderate predictive power in this context and, as

expected, this limited power depends critically on knowl-

edge of CB chemical shifts (Fig. 1b).

The RASP assignment algorithm

The initial assignment strategy considered above treats the

assignment of each spin system independently, ignoring the

sequential information encoded in the Xi/Xi-1 pairs of

chemical shifts. This sequential information is the basis of

conventional triple-resonance assignment strategies, and

can serve as a further constraint on an assignment strategy

based on chemical shift predictions. Therefore, we seek to

simultaneously optimize our chemical shift based scoring

function with the agreement between the common shifts Xj

and Xi-1 for sequentially assigned spin systems i and j as

described in Methods (Eqs. 3–5). Solving this optimization

problem uniquely is not computationally feasible, even for

small proteins. Moreover, a single unique solution is not

necessarily desirable, as it gives no insight into the extent

to which any specific residue assignment is constrained by

the input data. Instead, we seek to sample diverse near-

optimal solutions, yielding an ensemble of possible

assignments. In such an ensemble, assignments that are

robustly constrained by the data are consistent across the

ensemble, while the diversity of assignments at other spin

systems is indicative of the assignments that are consistent

with the available data. In this sense, our approach is

similar to that introduced recently in SAGA (Crippen et al.

2010), where various optimization heuristics yield a col-

lection of plausible assignments for further analysis. An

advantage of assignment ensembles of this type lies in their

power to suggest further experiments that might resolve

any remaining ambiguities in the assignment (e.g. further

triple resonance experiments to yield additional sequential

information, or residue specific labeling or unlabelling

schemes (Jaipuria et al. 2012)). Moreover, as described

below, assignment ensembles and chemical shift predic-

tions can assist the further analysis of existing spectra,

guiding the search for spin systems that may have been

misidentified due to overlap, weak signal, or other sources

of ambiguity.

To determine an assignment ensemble based on Eq. 5,

we have developed a sampling strategy based on the

GRASP optimization metaheuristic (Resende and Ribeiro

2010), which efficiently samples near-optimal solutions,

even for very large proteins. In developing this strategy, we

sought an approach that will assist the semi-automated

assignment of large and spectroscopically challenging

proteins, noting that robust fully automatic assignment

strategies already exist for small proteins (Bahrami et al.

2009; Schmidt and Güntert 2012). For this reason we do

not address the problem of spin-system assembly: this

process has been effectively automated for relatively sim-

ple systems, but fails for larger or spectroscopically chal-

lenging proteins. In such cases, manual spin-system

assembly by an experienced spectroscopist is necessary,

but relatively straightforward. As we demonstrate below,

our algorithm is robust to errors and incompleteness in

spin-system assembly. This robustness permits an iterative

assignment procedure in which results in initial rounds

provide highly reliable information on which to base sub-

sequent refinement of the input spin systems. Iterative

assignment of this type is essential to manual assignment

approaches, and in practice is common when applying

automated assignment algorithms to complex problems.

The performance of RASP

The resulting algorithm, which we call RASP, has been

applied to our test set, yielding an ensemble of approxi-

mately 100 possible residue assignments for each of the

17,530 experimental spin systems defined in the test set.

When the spin systems comprise only those shifts available

from HNCA and HNCO spectra, there are on average

seven unique assignment possibilities for each spin system,

and the correct assignment is present in the ensemble in

17,491 cases (99.8 %). A single unique residue assignment

is found for 3,157 spin systems and 99.9 % of these

assignments are correct, while the most frequent residue

assignment in the ensemble is correct for 97.8 % of all spin

systems. Further improvements in assignment coverage can

be achieved by the inclusion of CB chemical shifts

(Table 1, Fig S2), although the acquisition of these data (in

the form of HNCACB spectra, for example), is signifi-

cantly more demanding owing to the reduced sensitivity of

the corresponding experiments. The capacity of RASP to

generate extensive and accurate assignments even in the

absence of CB chemical shifts is to our knowledge unique,

and potentially enables detailed NMR studies of proteins

for which CB chemical shifts are not experimentally

accessible.

In assessing the assignment ensembles that result from

RASP, it is convenient to define a frequency threshold, Cf,

such that any residue assignment occurring more fre-

quently in the ensemble than the threshold is regarded as

uniquely determined. The choice of Cf reflects a tradeoff
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between the number of spin systems uniquely assigned on

the one hand, and the accuracy of those assignments on the

other. We quantify the former as assignment coverage: the

proportion of spin systems for which assignments are

made. It is clear from Fig. 2a that the relationship between

coverage and accuracy varies somewhat over the proteins

of the test set, reflecting variation in the protein size,

dataset completeness and other parameters that contribute

to the difficulty of the assignment problem. Importantly,

however, over a wide range of values of Cf, this variation

manifests as variation in coverage, rather than accuracy;

for a given threshold, assignment accuracy is essentially

invariant, while coverage decreases as the assignment

difficulty increases (Fig. 2b). Thus, Cf can be chosen to

yield a desired accuracy independent of the difficulty of the

assignment problem at hand. We find Cf = 0.7 to represent

an appropriate tradeoff, and use that value in Fig. 2b and in

the following. This yields an accuracy of 99.7 % and an

average coverage over the test set of 88 % (or 98 %, if CB

shifts are considered; Table 1). It is again instructive to

compare this performance of RASP using structure-based

chemical shift predictions to its performance when relying

on structure-independent chemical shift statistics (Fig S2).

Using RefDB average chemical shifts and spin systems that

include CB shifts, RASP performs reasonably well, with

average assignment coverage of 85 % at an accuracy of

99.0 %. When CB shifts are excluded from analysis,

however, only 12 % of residues are assigned, with an

accuracy of 79 %. These results further highlight the

necessity of CB shifts for deriving assignments from shift

statistics alone in the absence of structural information.

In its construction, the TALOS database was filtered to

remove assignments to residues with unusually high crys-

tallographic B-factor and those with extreme outlier

chemical shifts (Shen et al. 2009). This results in numerous

stretches lacking chemical shift data, such that on average

18 % of residues in our test set lack any chemical shift

data. Of the remaining 82 %, a further 1, 4, and 16 % of

residues are missing CA, CB or C shifts, respectively. This

level of missing data mimics to a reasonable extent the

incompleteness common in experimental datasets of chal-

lenging proteins. To further examine the robustness of

RASP to incomplete and noisy data, we deliberately

degraded the test set by randomly deleting a further frac-

tion of the backbone carbon chemical shifts, or by swap-

ping carbon shifts of the same type between pairs of spin

systems (thus mimicking errors in the assembly of spin

systems, as may occur, for example, where amide shifts are

degenerate). The results of these degradations are shown in

Fig. 2c; the dominant effect is a reduction in coverage,

with assignment accuracy robust to even this extent of

missing and noisy data.

To test the performance of RASP on an experimental

dataset, we assembled spin systems from a subset of the

spectra recently used to assign KPR, a 34 kDa enzyme of

the bacterial pantothenate biosynthetic pathway. KPR

exhibits extensive conformational heterogeneity which

manifests as peak broadening and duplication; more than

360 backbone amide peaks are identifiable in the 1H,15N-

TROSY experiment, where only 288 are expected on the

basis of the KPR sequence (Headey et al. 2008).

Considering the challenging nature of the KPR assign-

ment problem, we chose to use both CA and CB shifts in

the assignment process. Thus, spin systems were assembled

on the basis of HNCO, HNCA and HNCACB spectra only,

with i and i - 1 peaks distinguished on the basis of peak

intensity. In terms of instrument time, these spectra rep-

resent *40 % of the total dataset required for the manual

assignment of KPR. Spin systems were assembled manu-

ally from these spectra without reference to the existing

assignments or to any other spectra, with the exception of a

high-resolution 1H-15N TROSY which was used to identify

potentially overlapped spin systems. From these three

spectra 265 spin systems were defined, including 12 for

which no CB shifts could be identified, and 61 and 22 for

which the CBi-1 and CAi-1 chemical shifts, respectively,

could not be defined unambiguously. Spin systems for

which CAi could not be assigned unambiguously, or those

that appeared to be duplications arising from slow con-

formational exchange, were not included in the calculation.

On the basis of this initial set of spin systems, RASP

generated 183 residue assignments at Cf = 0.7 with three

errors. This represents 66 % of the manually assigned

residues of KPR at an accuracy of 98.4 %.

Table 1 RASP assignments of the test set

Input spin systems Assignment ensemble

diversity (accuracy)a
Accuracy of most

frequent assignment (%)

Accuracy (coverage)

at Cf = 0.7b
Accuracy (coverage)

at Cf = 0.9b

HNCA/HNCO 7.3 (99.8 %) 97.8 99.7 % (88 %) 99.9 % (61 %)

HNCACB/HNCO 2.1 (99.7 %) 98.6 99.6 % (98 %) 99.9 % (95 %)

a The average number of unique residue assignments to each spin system, and the proportion of spin systems that include the correct residue

assignment in the assignment ensemble
b The proportion of assignments more frequent than Cf that are correct, and the proportion of spin systems that are thus assigned
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Reasoning that the relatively poor coverage achieved

here may reflect errors in the input spin systems, we re-

examined them on the basis of this preliminary set of

assignments. Assuming the initial set of RASP assignments

to be accurate, we sought spin systems for which ambiguity

that existed in the initial analysis could now be resolved by

virtue of those spin systems being unique matches for gaps

in the initial RASP assignments. In this way we found two

spin systems that had been excluded from the initial input

that were no longer ambiguous, and we found five erro-

neous spin systems for which the assignment of i/i - 1

shift pairs had been inverted. We were also able to resolve

ambiguities in the assignment of CA or CB shifts in a

further 13 existing spin systems. Using this refined set of

spin systems as input, we reran RASP, yielding 222 residue

assignments (80 % coverage). Subsequent rounds of input

refinement resulted in a further nine spin system modifi-

cations and six new spin systems, and achieved a final

assignment of 237 residues (85 % coverage). This assign-

ment was in agreement with the published assignment

(Headey et al. 2008), with three exceptions: residue 34, a

residue flanked by prolines and therefore isolated with

respect to sequential connectivities, which appears to be

misassigned by RASP, and residues 32 and 135, which are

assigned by RASP but were not assigned in the published

assignment (Fig. 3).

We compared these results to those produced by the

widely-used backbone assignment algorithms MARS (Jung

and Zweckstetter 2004) and PINE (Bahrami et al. 2009).

Against the initial set of manually defined input spin sys-

tems, MARS achieves 53, 39 and 42 assignments of high,

medium and low confidence, respectively, with 0, 7 (17 %)

and 11 (26 %) errors, for a total 48 % coverage at 87 %

accuracy, while PINE reports greater than 95 % probability

for 224 assignments, with 27 errors. Thus, RASP signifi-

cantly outperforms MARS in terms of both coverage and

accuracy on this initial dataset, while PINE offers better

coverage than RASP, although at the expense of a sub-

stantial decrease in accuracy. When tested against the final

set of spin systems refined against the RASP assignments,

MARS assigned 87, 69 and 44 residues with high, medium,

and low reliability respectively (72 % total coverage), with

5 medium and 8 low reliability assignments disagreeing

with the published assignments (Fig. 3). PINE reports 249

b Fig. 2 RASP performance on a 154-protein test set. a Assignment

accuracy and coverage achieved by RASP using spin systems derived

from HNCO and HNCA spectra for each protein in the test set varies

as a function of the frequency threshold, Cf (color scale), used to filter

the assignment ensemble. For 63 of 154 proteins accuracy is 100 %

for all values of Cf. The average over all proteins is plotted in bold.

b RASP assignment accuracy (blue) and coverage (red) achieved at

Cf = 0.7 as a function of protein size, using spin systems derived

from HNCO and HNCA spectra. c Robustness of RASP assignments

to incomplete and erroneous spin systems definitions. RASP assign-

ment accuracy (top panels) and coverage (bottom panels) in the face

of random carbon shift deletion (left panels) or exchange between

spin systems (right panels), for spin systems derived from HNCO and

HNCA spectra (black), HNcaCO and HNCA spectra (blue) or HNCO

and HNCACB spectra (red)
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assignments (87 % coverage) with 6 errors. Even this level

of performance could not be achieved for this data set using

MARS or PINE alone, as it is based on the refined set of

spin systems assembled with the assistance of RASP.

When the initial set of manually assembled spin systems

was used as input for either of these established assignment

strategies, they did not achieve the accuracy or coverage

required for spin system refinement.

The process of iterative refinement of the input spin

systems employed for the KPR assignments is analogous to

conventional manual assignment strategies, in which peak-

picking and spin system assembly is continuously refined

in light of the current partial assignment. RASP assists this

process significantly, thanks to the ensemble of assignment

possibilities that RASP provides for each spin system (or

each residue). Because the correct assignment is almost

always found within this ensemble (Table 1), the search for

likely candidates for an unassigned spin system is signifi-

cantly facilitated.

The few errors in the RASP assignment (both for KPR

and across the test set) occur almost exclusively at the

extremities of contiguous assigned stretches, and in short,

isolated stretches of assignable residues, as observed for

example where one or two residues are flanked by prolines

or residues that are otherwise unassignable. Careful

examination of such regions in a proposed assignment is

therefore warranted as a means of identifying possible

errors. Conversely, such examination may also identify

assignments that are missed by the algorithm, for example

because of erroneous shift predictions for a particular res-

idue, but that are strongly supported by sequential con-

nectivities or other data.

Conclusions

For proteins where structural information is available,

RASP promises to significantly accelerate the backbone

assignment process by reducing the requirements for both

data acquisition and manual analysis. Several avenues for

further development are immediately apparent. Although

our current focus has been the use of data available in a

conventional triple-resonance assignment campaign, other

structural parameters such as NOEs or RDCs could be

incorporated into the scoring function, and are likely to

further improve assignment accuracy and coverage for

challenging systems (Langmead and Donald 2004; Strat-

mann et al. 2010). Chemical shifts measured for proteins in

Fig. 3 The sequential

assignment of KPR.

Conventional (Headey et al.

2008) (top), RASP, MARS

(Jung and Zweckstetter 2004)

and PINE (Bahrami et al. 2009)

assignments are depicted below

the KPR sequence, color-coded

as unassignable (grey), not

assigned (white), assigned

conventionally (cyan), assigned

in agreement with the

conventional assignment (blue),

assigned by RASP, MARS or

PINE but not assigned

conventionally (purple),

misassigned by RASP, MARS

or PINE (red). Bar height for

MARS assignments encodes

reported assignment reliability

(high/medium/low)
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the solid state are generally in good agreement with those

observed in solution, suggesting that chemical shift pre-

dictions are likely to offer similar advantages to the reso-

nance assignment problem in solid-state NMR. RASP is

available from http://sourceforge.net/p/raspnmr. We are

currently applying RASP to proteins of interest that have

hitherto resisted assignment by existing methods (Mac-

Raild et al. 2011; Richard et al. 2010).
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